# EX 1 winnings <- 100000 * 5 + 2000 * 40 + 1000 * 160 + 500 * 1000 + 30 * 16000 + 20 * 80000 + 10 * 180000 + 5 * 240000 + 4 * 250000 N <- 3000000 Expectation <- winnings / N Expectation # 2.44 # But one ticked costs 4 euros, so expected win is Expectation - 4 # -1.56 # EX 2 dpois(0, lambda = 2.63) # a dpois(1, lambda = 2.63) # b dpois(2, lambda = 2.63) # c dpois(3, lambda = 2.63) # d dpois(4, lambda = 2.63) # e 1 - (dpois(0, lambda = 2.63) + dpois(1, lambda = 2.63) + dpois(2, lambda = 2.63) + dpois(3, lambda = 2.63) + dpois(4, lambda = 2.63)) # Same: 1 - ppois(4, lambda=2.63) # Cumulative distribution function / lower tail # Same: ppois(4, lambda=2.63, lower=FALSE) # upper tail # EX 3 # This sounds like a geometric distribution p <- 0.35 1 / p # Expected number of reports to read #2.857143 # At most two P <- p + (1 - p)*p P # At least three 1 - P # 0.4225 # One solution 1 - (dgeom(0, p) + dgeom(1, p)) # Directly / R counts the number of failures 1 - pgeom(1,p) # we fail at most once # Or even simpler way pgeom(1,p, lower = F) pgeom(1,p, lower = FALSE) # EX 4 dpois(1, lambda = 2.3) * dpois(0, lambda = 0.7) # 1-0 dpois(2, lambda = 2.3) * dpois(0, lambda = 0.7) # 2-0 dpois(2, lambda = 2.3) * dpois(1, lambda = 0.7) # 2-1 # draw dpois(0, lambda = 2.3) * dpois(0, lambda = 0.7) + dpois(1, lambda = 2.3) * dpois(1, lambda = 0.7) + dpois(2, lambda = 2.3) * dpois(2, lambda = 0.7) + dpois(3, lambda = 2.3) * dpois(3, lambda = 0.7) + dpois(4, lambda = 2.3) * dpois(4, lambda = 0.7) + dpois(5, lambda = 2.3) * dpois(5, lambda = 0.7) + dpois(6, lambda = 2.3) * dpois(6, lambda = 0.7) + dpois(7, lambda = 2.3) * dpois(7, lambda = 0.7) + dpois(8, lambda = 2.3) * dpois(8, lambda = 0.7) + dpois(9, lambda = 2.3) * dpois(9, lambda = 0.7) + dpois(10, lambda = 2.3) * dpois(10, lambda = 0.7) # 0.1685989 # This is already very small dpois(10, lambda = 2.3) * dpois(10, lambda = 0.7) # Using for loop: sum <- 0 for (k in 0:10) {sum <- sum + dpois(k, lambda = 2.3) * dpois(k, lambda = 0.7)} sum #[1] 0.1685989 sum <- 0 for (k in 0:1000000) # loop until million {sum <- sum + dpois(k, lambda = 2.3) * dpois(k, lambda = 0.7)} sum # [1] 0.1685989 # EX 5 # This looks like a binomial distribution p = 0.6 n = 5 # All are alive dbinom(5, size=5, prob=0.6) # 0.07776 # At least three dbinom(3, size=5, prob=0.6) + dbinom(4, size=5, prob=0.6) + dbinom(5, size=5, prob=0.6) # 0.68256 # Cumulative version 1 - pbinom(2, 5, 0.6) # OR pbinom(2, 5, 0.6, lower = FALSE) # Exactly two dbinom(2, size=5, prob=0.6) # 0.2304