Mathematics A

Assignment two (week 38)

1. Let U be a set and let \mathcal{F}_1 and \mathcal{F}_2 be nonempty families of subsets of U such that $\mathcal{F}_1 \subseteq \mathcal{F}_2$. Show (=prove) that the following inclusions hold:

(a)
$$\bigcup \mathcal{F}_1 \subseteq \bigcup \mathcal{F}_2$$

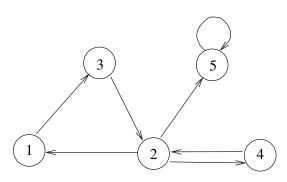
(b)
$$\bigcap \mathcal{F}_2 \subseteq \bigcap \mathcal{F}_1$$

2. Let U be a set and let $\emptyset \neq \mathcal{F} \subseteq \wp(U)$ be a nonempty family of subsets of U. Prove the following equalities:

(a)
$$(\bigcap \mathcal{F})^c = \bigcup \{A^c \mid A \in \mathcal{F}\}$$

(b)
$$(\bigcup \mathcal{F})^c = \bigcap \{A^c \mid A \in \mathcal{F}\}$$

Recall that the complement of any $X \subseteq U$ is defined by $X^c = U \setminus X$.


3. The courses taken by John, Mary, Paul, and Sally are listed below:

John: MATH 211, CSIT 121, MATH 220 Mary: MATH 230, CSIT 121, MATH 212 Paul: CSIT 120, MATH 230, MATH 220

Sally: MATH 211, CSIT 120

Give a graphical representation of the relation R defined as a R b if student a is taking course b.

4. Write the set of ordered pairs for the relation represented by the following directed graph:

- **5.** Let R be a binary relation on the set $\wp(\{a,b\})$ defined so that $(A,B) \in R$ holds if $A \cap B = \emptyset$. Write out the relation R.
- **6.** Let A, B, C be sets. Prove the following equalities:

(a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$