Task 1

Mass of the car	m	[kg]
Speed of the car	V	[m/s]
Kinetic energy of the car	$E_{ m kin}$	[J]
Potential energy of the car	$E_{ m pot}$	[J]
Height where the car should be lifted	h	[m]
Gravitational acceleration	g	$[m/s^2]$

Constants:

$$g = 9.81 \text{ m/s}^2$$

Unit conversions:

$$1\frac{\text{km}}{\text{h}} = \frac{1000 \text{ m}}{60.60 \text{ s}} = \frac{1}{3.6} \frac{\text{m}}{\text{s}}$$
$$1 \text{ J} = 0.001 \text{ kJ}$$

Formulas:

$$E_{\text{kin}} = \frac{1}{2}mv^2$$

 $E_{\text{pot}} = mgh$
 $E_{\text{kin}} = E_{\text{pot}}$

Solution:

Kinetic energy:

$$E_{\rm kin}=\frac{1}{2}mv^2$$

Substitute initial values

Height where the car should be lifted:

$$E_{\rm kin} = E_{\rm pot}$$

Substitute expressions

$$\frac{1}{2}mv^2 = mgh$$

Solve h

$$\boldsymbol{h} = \frac{v^2}{2g}$$

Substitute initial values

Task 2

Mass of the car	m	[kg]
Width of the area of contact of one tire	W	[m]
Height of the area of contact of one tire	h	[m]
Amount of tires	N	[-]
Total area of contact	Α	$[m^2]$
Force exerted on the ground by the weight of the car	$F_{ m g}$	[N]
Pressure caused on the ground by the tires	p	[Pa]
Atmospheric pressure	p_{atm}	[Pa]
Gravitational acceleration	g	[m/s ²]

Constants:

g =
$$9.81 \text{ m/s}^2$$

 $p_{\text{atm}} = 101325 \text{ Pa}$

Unit conversions:

$$1 \text{ cm} = 0.01 \text{ m}$$

 $1 \text{ Pa} = 0.001 \text{ kPa}$

Formulas:

$$F_{g} = mg$$

$$A = Nwh$$

$$p = \frac{F_{g}}{A} + p_{atm}$$

Solution:

$$p = \frac{F_g}{A} + p_{\text{atm}}$$

substitute expressions

$$p = \frac{mg}{Nwh} + p_{atm}$$

substitute initial values

Task 3

Mass of the car	m	[kg]
Speed of the car	V	[m/s]
Distance car slides against the asphalt	Δx	[m]
Distance car slides against the asphalt, winter	$\Delta x_{ m win}$	[m]
Force on the car generated by sliding against the asphalt	F	[N]
Force on the car generated by sliding against the asphalt, winter	$F_{ m win}$	[N]
Kinetic energy of the car	$E_{ m kin}$	[1]
Work done by braking force	W	[J]

Unit conversions:

$$1\frac{\text{km}}{\text{h}} = \frac{1000 \text{ m}}{60.60 \text{ s}} = \frac{1}{3.6} \frac{\text{m}}{\text{s}}$$

$$1 N = 0.001 kN$$

Formulas:

$$E_{kin} = \frac{1}{2}mv^{2}$$

$$W = F\Delta x$$

$$W = F_{win}\Delta x_{win}$$

$$E_{\rm kin} = W$$

Solution:

Force under good driving conditions

$$W = F\Delta x$$

Substitute expressions

$$E_{\rm kin} = \frac{1}{2}mv^2 = F\Delta x$$

Solve *F*

$$F = \frac{mv^2}{2\Delta x}$$

Substitute initial values

Force during winter

$$F_{\rm win} = \frac{mv^2}{2\Delta x_{\rm win}}$$

Substitute initial values

Task 4

Mass of the car	m	[kg]
Speed of the car	V	[m/s]
Heat generated during braking	Q	[٦]
Efficiency of braking	η	[-]

Unit conversions:

$$1\frac{\text{km}}{\text{h}} = \frac{1000 \text{ m}}{60.60 \text{ s}} = \frac{1}{3.6} \frac{\text{m}}{\text{s}}$$
$$1 \text{ J} = 0.001 \text{ kJ}$$

Formulas:

$$E_{\rm kin} = \frac{1}{2} m v^2$$

$$\eta = \frac{E_{\rm kin}}{Q}$$

Solution:

$$\eta = \frac{E_{\rm kin}}{Q}$$

Substitute expressions

$$\boldsymbol{\eta} = \frac{mv^2}{2Q}$$

substitute initial values

Task 5

Volume of the container	V	[m ³]
Mass of the water	m	[kg]
Specific heat capacity of water	С	[J/(kg K)]
Density of water	ho	$[kg/m^3]$
Amount of heat supplied to the water	Q	[J]
Temperature rise that can be achieved using the heat	ΔT	[°C]

Unit conversions:

$$1 l = 1 dm^3 = 0.001 m^3$$

1 J = 0.001 kJ

Formulas:

$$c = \frac{Q}{\Delta T m}$$

$$\rho = \frac{m}{V}$$

Solution

From

$$\rho = \frac{m}{V}$$

solve *m*

$$m = \rho V$$

From

$$c = \frac{Q}{\Delta T m}$$

solve ΔT

$$\Delta T = \frac{Q}{cm}$$

Substitute expression of m

$$\Delta T = \frac{Q}{c\rho V}$$

Substitute initial values