Group 1 (Wed 6/10, 10–12), Group 2 (Fri 8/10, 8–10), Group 3 (Fri 8/10, 12–14)

1.

(a) Suppose P is FALSE, Q is FALSE, S is TRUE.

$$(S \lor P) \land (Q \land \neg S) = (\mathbf{T} \lor \mathbf{F}) \land (\mathbf{F} \land \neg \mathbf{T}) = \mathbf{T} \land \mathbf{F} = \mathbf{F}$$

(b) Suppose P is true, Q is true, R is false, S is false.

$$(Q \lor P) \land (\neg R \lor \neg S) = (\mathbf{T} \lor \mathbf{T}) \land (\neg \mathbf{F} \lor \neg \mathbf{F}) = \mathbf{T} \land \mathbf{T} = \mathbf{T}$$

- **2.** Let P, Q, R and S be logical propositions.
- (a) Suppose P is FALSE, S is FALSE, R is TRUE.

$$\neg((S \land P) \lor \neg R) = \neg((\mathbf{F} \land \mathbf{F}) \lor \neg \mathbf{T}) = \neg(\mathbf{F} \lor \mathbf{F}) = \neg \mathbf{F} = \mathbf{T}.$$

(b) Suppose P is TRUE, Q is FALSE, R is TRUE.

$$P \Rightarrow (Q \Leftrightarrow R) = \mathbf{T} \Rightarrow (\mathbf{F} \Leftrightarrow \mathbf{T}) = \mathbf{T} \Rightarrow \mathbf{F} = \mathbf{F}.$$

3.

(a)	Div. by 2	Quotient	Remainder
	${79/2}$	39	1
	39/2	19	1
	19/2	9	1
	9/2	4	1
	4/2	2	0
	2/2	1	0
	1/2	0	1

 $B = 100\,1111$

$$D = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^2 + 2^0$$

= 1024 + 512 + 256 + 64 + 32 + 4 + 1 = 2021

- **4.** Let $U = \{a, b, c, d, e, f\}$.
- (a) $\emptyset = (0, 0, 0, 0, 0, 0)$ and U = (1, 1, 1, 1, 1, 1)
- (b) A = (1, 0, 1, 1, 0, 1) and B = (1, 1, 0, 0, 1, 1)
- (c) $A \cup B = (1 \lor 1, 0 \lor 1, 1 \lor 0, 1 \lor 0, 0 \lor 1, 1 \lor 1) = (1, 1, 1, 1, 1, 1)$ and $A \cap B = (1 \land 1, 0 \land 1, 1 \land 0, 1 \land 0, 0 \land 1, 1 \land 1) = (1, 0, 0, 0, 0, 1).$
- (d) $A^c = (\neg 1, \neg 0, \neg 1, \neg 1, \neg 0, \neg 1) = (0, 1, 0, 0, 1, 0)$ and $B \setminus A = (1 \land \neg 1, 1 \land \neg 0, 0 \land \neg 1, 0 \land \neg 1, 1 \land \neg 0, 1 \land \neg 1) = (0, 1, 0, 0, 1, 0)$
- **5.** Now x|y means that there is an integer k such that y = kx. If a|b and b|c, then there are integers k_1 and k_2 such that $b = k_1a$ and $c = k_2b$. This means that

$$c = k_2 b = k_2 k_1 a.$$

Because k_1k_2 is an integer, a|c.

6. Let P = "ab is even". Then $\neg P = "ab$ is **not** even", that is, $\neg P = "ab$ is odd". Let Q = "a **or** b is even". In fact, Q consists of **two** propositions $Q_1 = "a$ is even" and $Q_2 = "b$ is even". Then, $Q = Q_1 \lor Q_2$ and

$$\neg Q = \neg (Q_1 \lor Q_2) = \neg Q_1 \land \neg Q_2 = "a \text{ is not even"} \land "b \text{ is not even"}$$

= "a is odd" \land "b is odd" = "a and b are odd"

Then, the claim

If ab is an even number, then a or b is even

equals the proposition $P \Rightarrow Q$.

- (a) This proves $\neg Q \Rightarrow \neg P$. This is logically equivalent to $P \Rightarrow Q$. Therefore, the proof is valid.
- (b) This proves $Q \Rightarrow P$. The proof is not valid.
- (c) This supposes that P is true. Then it shows that from $\neg Q$ follows the contradiction \mathbf{F} . Therefore, Q is true. We have that $P \Rightarrow Q$ is true and the proof is valid.
- (d) This also supposes that P is true. Then it shows that $\neg Q_1$ implies Q_2 , that is, $\neg Q_1 \Rightarrow Q_2$. Now $\neg Q_1 \Rightarrow Q_2$ is equivalent to $Q_1 \vee Q_2$. Thus, $Q = Q_1 \vee Q_2$ is true and we have shown that $P \Rightarrow Q$ is true. The proof is valid.