Group 1 (Wed 17/11, 17–19), Group 2 (Thu 18/11, 12–14), Group 3 (Fri 19/11, 8–10)

1. An integer k with n = ak:

(a)
$$20 = 4 \cdot 5$$

(b)
$$-25 = 5 \cdot (-5)$$

(c)
$$9 = -3 \cdot -3$$

(d)
$$-27 = -9 \cdot 3$$

(e)
$$23 = 1 \cdot 23$$

(f)
$$17 = -1 \cdot (-17)$$

(g)
$$0 = -5 \cdot 0$$

(h)
$$75 = 75 \cdot 1$$

2. a|b if there is k such that $b=a\cdot k$.

(a)
$$x|0$$
, because $0 = x \cdot 0$

(b)
$$1|x$$
, because $x = 1 \cdot x$

(c)
$$x|x$$
, because $x = x \cdot 1$

3. We have that

$$\frac{2n+3}{n} = 2 + \frac{3}{n}.$$

The result is an integer if and only if $\frac{3}{n}$ is an integer. This happens exactly when $n \in \{-3, -1, 1, 3\}$.

(b) By definition $a \in \langle b \rangle \iff b|a$.

 (\Rightarrow) Suppose that m|n. If $a \in \langle n \rangle$, then n|a. We have by Lemma 1(b) that m|a. This means that $a \in \langle m \rangle$. We have proved $\langle n \rangle \subseteq \langle m \rangle$

 (\Leftarrow) Suppose $\langle n \rangle \subseteq \langle m \rangle$. Because $n \in \langle n \rangle \subseteq \langle m \rangle$, we have m|n.

4. We have that gcd(2016, 323) = 1, because

$$2016 = 6 * 323 + 78$$

$$323 = 4 * 78 + 11$$

$$78 = 7 * 11 + 1$$

$$11 = 11 * 1 + 0$$

We can now write

$$1 = 78 - 7 * 11 = (2016 - 6 * 323) - 7 * (323 - 4 * 78)$$

$$= 2016 - 13 * 323 + 28 * 78 = 2016 - 13 * 323 + 28 * (2016 - 6 * 323)$$

$$= 29 * 2016 - (13 + 28 * 6) * 323 = \boxed{29} * 2016 - \boxed{181} * 323$$

5. (a) lcm(8, 12) = 24, lcm(20, 30) = 60, lcm(51, 68) = 204, lcm(23, 18) = 414

(b) For instance, gcd(51, 68) = 17 and lcm(51, 68) = 204.

Now 51 * 68 = 3468 and 17 * 204 = 3468. It seems to be that

$$a * b = \operatorname{lcm}(a, b) * \gcd(a, b)$$

(c) By (b), we have that

$$lcm(a,b) = \frac{a * b}{\gcd(a,b)}$$

We have gcd(301337, 307829) = 541, because

$$301337 = 0 * 307829 + 301337$$

$$307829 = 1 * 301337 + 6492$$

$$301337 = 46 * 6492 + 2705$$

$$6492 = 2 * 2705 + 1082$$

$$2705 = 2 * 1082 + 541$$

$$1082 = 2 * 541 + 0$$

We can now solve

$$lcm(301337, 307829) = (301337 * 307829)/541 = 171460753$$

6. First we see that

$$\frac{ab}{\gcd(a,b)} = a \frac{b}{\gcd(a,b)} = b \frac{a}{\gcd(a,b)}$$

This means that $\frac{ab}{\gcd(a,b)}$ is a common multiple of a and b. Because $\operatorname{lcm}(a,b)$ is the smallest common multiple of a and b, we have

$$\frac{ab}{\gcd(a,b)} \ge \operatorname{lcm}(a,b) \tag{1}$$

On the other hand, by Theorem 2 (Division Theorem), we can write

$$ab = q \operatorname{lcm}(a, b) + r$$
, where $0 < r < \operatorname{lcm}(a, b)$.

Because $\operatorname{lcm}(a,b) = sa$ and $\operatorname{lcm}(a,b) = tb$ for some s and t, we have ab = qsa + r. If we divide by a, we get $b = qs + \frac{r}{a}$. Similarly, we have ab = qtb + r and dividing by b we obtain $a = qt + \frac{r}{b}$. Suppose that $r \neq 0$. Then the above mean that a|r and b|r. Therefore, there are k_1 and k_2 such that $r = k_1a = k_2b$, and r is a common multiplier of a and b. On the other hand $r < \operatorname{lcm}(a,b)$, which contradicts the minimality of $\operatorname{lcm}(a,b)$. Hence, we must have r = 0 and $\operatorname{lcm}(a,b)$ divides ab. Notice that

$$\frac{ab}{\operatorname{lcm}(a,b)} = \frac{a}{\operatorname{lcm}(a,b)/b} = \frac{b}{\operatorname{lcm}(a,b)/a}$$

is a common divisor of a and b. By the maximality of the $\gcd(a,b),$

$$\frac{ab}{\operatorname{lcm}(a,b)} \le \gcd(a,b),$$

which directly gives

$$\frac{ab}{\gcd(a,b)} \le \operatorname{lcm}(a,b) \tag{2}$$

Combining (1) and (2), we get

$$ab = \operatorname{lcm}(a, b) \gcd(a, b)$$