Logic circuits and functions

Olli-Pekka Hämäläinen

Control logic

- In modern machines, the vast majority of control & information transfer processes are done in digital fashion
- The control is practically implemented via logic gates
- These gates are basically propositions connected by connectives
 - We are already familiar with most of these
- Gates are constructed from simple electrical parts: diodes, transistors and relays
- Control is based on Boolean algebra

Boolean algebra

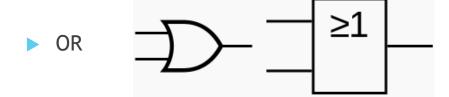
- In Boolean algebra, variables have only a truth value (1/0, or TRUE / FALSE, respectively)
- The basic Boolean functions are the same as the connectives in propositional logic:
 - ► Conjunction $(a \land b)$
 - ightharpoonup Disjunction $(a \lor b)$
 - Negation $(\neg a)$
- In Boolean algebra, following simplified shorthand notation is often used:
 - ► Conjunction ab (AND = Boolean multiplication)
 - ▶ Disjunction a + b (OR = Boolean addition)
 - Negation \bar{a} or alternatively a'

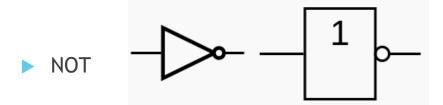
Boolean algebra

- In Boolean algebra, it is important to notice the following peculiarities:
 - 1 + 1 = 1 (OR)
 - \rightarrow a + bc = (a + b)(a + c)
- ▶ Both of these seem to be against the rules of "regular" algebra, but these rules can be shown to be correct by
 - Constructing a truth table
 - Sketching the graphs of these circuits

Logic gates

- Logic gates have their own drawing symbols
 - ► Left: American version (more common)
 - Right: European version

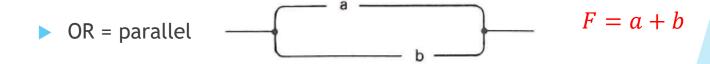




Simplified circuit diagram

- A logic circuit can be drawn also without "fancy" symbols using just a simple basic idea:
 - Draw all possible situations where the truth value is 1
 so, a signal can travel from left to right
 - Current values of variables are indicated by variable letters and their negations as in shorthand notation

AND = series ———— a ——— b ————
$$F = ab$$

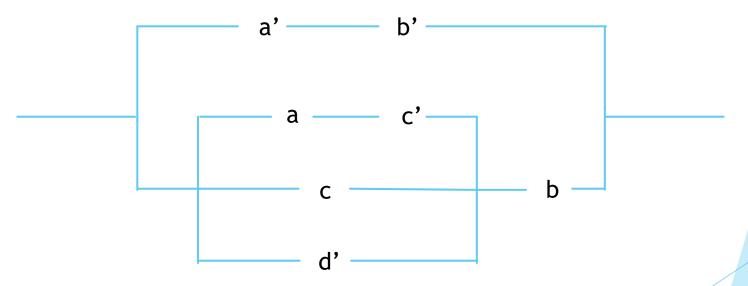


NOTE: This notation only allows negations of sole variables, so we might have to use De Morgan's laws

$$\overline{ab} \Leftrightarrow \overline{a} + \overline{b}$$
 $\overline{a+b} \Leftrightarrow \overline{a}\overline{b}$

Simplified circuit diagram

- Simplified circuit diagram is often easier to understand for people who are not familiar with electronics, computer science or advanced mathematics
- Example:



- ▶ Logic function: a'b' + (ac' + c + d')b
- \triangleright Expanded SOP-form: a'b' + abc' + bc + bd'

Forms of logic function

- The switching logic can be presented in three forms:
 - Truth table (we've done these already)
 - Logic function in Boolean algebra
 - Circuit diagram (official or simplified)
- The logic function can be constructed in two different normal forms:
 - Disjunctive normal form DNF (Sum Of Products, SOP)
 - Conjunctive normal form CNF (Product Of Sums, POS)
- ► The difference is significant

Sum of Products (SOP)

- In SOP-form the logic function is constructed of products of which each of them gives a truth value of 1
- A product term which includes all the variables is called a minterm
- One minterm corresponds to exactly one combination in the truth table; for this combination the minterm gets a truth value of 1 and all other combinations cause the minterm go to 0
- Summing up all the minterms produces a standard SOP form for the circuit
- In computer science this form is called disjunctive normal form (DNF)
- A SOP-circuit always has two levels:
 - First all AND operations
 - In the end all OR operations (between minterms)

Product of Sums (POS)

- In POS-form the logic function is constructed of sum terms of which each of them gives a truth value of 0
- A sum term which includes all the variables is called a maxterm
- NOTE! Now the negations in maxterms are inverted, because the truth value must be zero!
 - ► For example, if in truth table the truth value of A is 1, we have to write the negation of A in the sum term; see example on next slide)
- Multiplying all the maxterms produces a standard POS form for the circuit
- In computer science this form is called conjunctive normal form (CNF)
- A POS-circuit always has two levels, too:
 - First all OR operations
 - In the end all AND operations (between maxterms)

Minterms and maxterms

Example of minterms and maxterms in a three-variable circuit case:

XYZ	Minte	rms	Maxterms		
X 1 2	Product	Symbol	Sum	Symbol	
0 0 0	X Y Z	m0	X + Y + Z	M0	
0 0 1	X Y Z	m1	X + Y + Z	M1	
0 1 0	X Y Z	m2	X + Y + Z	M2	
0 1 1	X Y Z	m3	X + Y + Z	M3	
1 0 0	X Y Z	m4	X + Y + Z	M4	
1 0 1	X Y Z	m5	X + Y + Z	M5	
1 1 0	XYZ	m6	X + Y + Z	M6	
	XYZ	m7	X + Y + Z	M7	

- Formulate a logic function that fulfills the following truth table using
 - a) Minterms (SOP-form)
 - b) Maxterms (POS-form)

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

a) SOP-form

A	В	С	F	Minterm
0	0	0	0	
0	0	1	0	
0	1	0	1	$ar{A}Bar{C}$
0	1	1	0	
1	0	0	1	$Aar{B}ar{\mathcal{C}}$
1	0	1	1	$Aar{B}\mathit{C}$
1	1	0	0	
1	1	1	1	ABC

$$F = \overline{A}B\overline{C} + A\overline{B}\overline{C} + A\overline{B}C + ABC$$

b) POS-form

A	В	С	F	Maxterm
0	0	0	0	A + B + C
0	0	1	0	$A + B + \bar{C}$
0	1	0	1	
0	1	1	0	$A + \bar{B} + \bar{C}$
1	0	0	1	
1	0	1	1	
1	1	0	0	$\bar{A} + \bar{B} + C$
1	1	1	1	

$$F = (A + B + C)(A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

Simplification of a logic function

- Logic functions presented in their normal forms do work, but they are often overtly complicated
- Usually it's possible to simplify the functions
- Minimization of a logic function is, in general, an NPhard problem
 - Possible, but takes A LOT of time
- Minimization can still be done to some extent in reasonable time
- Tools that are used for this include:
 - Boolean algebra (simplification)
 - Karnaugh map ("K-map")
 - Certain computer software

Formulae of Boolean algebra

One-variable theorems:

$$X + 0 = X$$
 $X \cdot 1 = X$
 $X + 1 = 1$ $X \cdot 0 = 0$
 $X + X = X$ $X \cdot X = X$
 $X + X = 1$ $X \cdot X = 0$

Several-variable theorems:

$$X + Y = Y + X$$
 $X Y = Y X$
 $X + (Y + Z) = (X + Y) + Z$ $X(Y Z) = (X Y)Z$
 $X(Y + Z) = X Y + X Z$ $X + Y Z = (X + Y)(X + Z)$

De Morgan's laws

$$\overline{X + A} = \underline{X} \cdot \underline{A}$$
 $X \cdot A = \underline{X} + \underline{A}$

Consensus theorem

In addition to previously mentioned formulae, so called "consensus theorem" allows us to remove terms which are not needed:

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

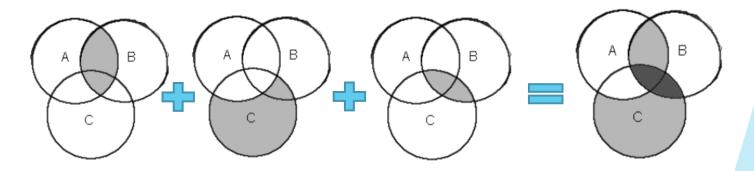
► Term BC is unnecessary. Why? Let's examine using set theory:

Consensus theorem

In addition to previously mentioned formulae, so called "consensus theorem" allows us to remove terms which are not needed:

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

► Term BC is unnecessary. Why? Let's examine using set theory:

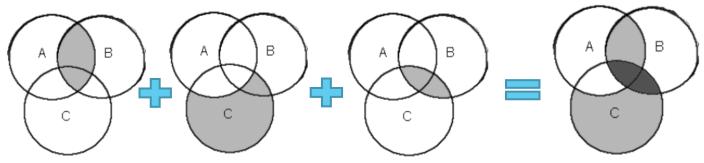


Consensus theorem

In addition to previously mentioned formulae, so called "consensus theorem" allows us to remove terms which are not needed:

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

► Term BC is unnecessary. Why? Let's examine using set theory:



Area BC is colored twice; this means that it is already included in our chosen set. Therefore the term BC can left out.

- Simplify the logic functions of example 1 and present the circuit diagram in
 - ▶ a) SOP-form

b) POS-form.

- Simplify the logic functions of example 1 and present the circuit diagram in
 - > a) SOP-form

$$F = \overline{A}B\overline{C} + A\overline{B}\overline{C} + A\overline{B}C + ABC$$

- Simplify the logic functions of example 1 and present the circuit diagram in
 - > a) SOP-form

$$F = \overline{A}B\overline{C} + A\overline{B}\overline{C} + A\overline{B}C + ABC$$
 Duplication
= $\overline{A}B\overline{C} + (A\overline{B}\overline{C} + A\overline{B}C) + (A\overline{B}C + ABC)$

- Simplify the logic functions of example 1 and present the circuit diagram in
 - > a) SOP-form

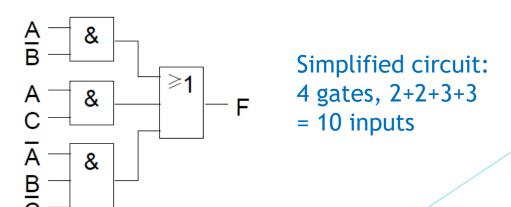
$$F = \overline{A}B\overline{C} + A\overline{B}\overline{C} + A\overline{B}C + ABC$$
 Duplication
 $= \overline{A}B\overline{C} + (A\overline{B}\overline{C} + A\overline{B}C) + (A\overline{B}C + ABC)$
 $= \overline{A}B\overline{C} + A\overline{B}(\overline{C} + C) + AC(\overline{B} + B)$

- Simplify the logic functions of example 1 and present the circuit diagram in
 - > a) SOP-form

$$F = \overline{A}B\overline{C} + A\overline{B}\overline{C} + A\overline{B}C + ABC$$
 Duplication
 $= \overline{A}B\overline{C} + (A\overline{B}\overline{C} + A\overline{B}C) + (A\overline{B}C + ABC)$
 $= \overline{A}B\overline{C} + A\overline{B}(\overline{C} + C) + AC(\overline{B} + B)$ = 1
 $= \overline{A}B\overline{C} + A\overline{B} + AC$

- Simplify the logic functions of example 1 and present the circuit diagram in
 - > a) SOP-form

$$F = \overline{A}B\overline{C} + A\overline{B}\overline{C} + A\overline{B}C + ABC$$
 Duplication
 $= \overline{A}B\overline{C} + (A\overline{B}\overline{C} + A\overline{B}C) + (A\overline{B}C + ABC)$
 $= \overline{A}B\overline{C} + A\overline{B}(\overline{C} + C) + AC(\overline{B} + B)$ = 1
 $= \overline{A}B\overline{C} + A\overline{B} + AC$



- Simplify the logic functions of example 1 and present the circuit diagram in
 - > a) POS-form

- Simplify the logic functions of example 1 and present the circuit diagram in
 - > a) POS-form

$$F = (A + B + C)(A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

- Simplify the logic functions of example 1 and present the circuit diagram in

$$F = (A + B + C)(A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

$$= (A + B + C)(A + B + \overline{C})(A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

- Simplify the logic functions of example 1 and present the circuit diagram in
 - a) POS-form Duplication

$$F = (A + B + C)(A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

$$= (A + B + C)(A + B + \overline{C})(A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

Consensus theorem

Consensus theorem

- Simplify the logic functions of example 1 and present the circuit diagram in
 - a) POS-form

Duplication

$$F = (A + B + C)(A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

$$= (A + B + C)(A + B + \overline{C})(A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

Consensus theorem

Consensus theorem

$$= (A + B)(A + \overline{C})(\overline{A} + \overline{B} + C)$$

- Simplify the logic functions of example 1 and present the circuit diagram in
 - a) POS-form

Duplication

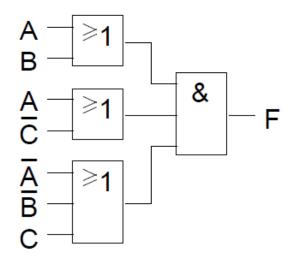
$$F = (A + B + C)(\underline{A} + \underline{B} + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

$$= (A + B + C)(A + B + \overline{C})(A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

Consensus theorem

Consensus theorem

$$= (A + B)(A + \overline{C})(\overline{A} + \overline{B} + C)$$



Simplified circuit:

4 gates, 2+2+3+3

= 10 inputs

SOP or POS?

- Which normal form is easier, then?
- SOP is often considered "easier for brains"
 - No need to invert truth values
 - Easier to simplify (Boolean) algebraically
- The end result might be simpler in SOP- or POS-form
 - No way to tell unless you have a "trained eye"
- One heuristic approach:
 - ▶ In truth table, F = 1 for minterms and F = 0 for maxterms
 - If there are less minterms, SOP form gives a simpler starting point
 - If there are less maxterms, POS form gives a simpler starting point
 - ...but situation can change due to simplification!

- Formulate a logic function that corresponds to the truth table on the right using both SOP and POS forms.
- Simplify your results.

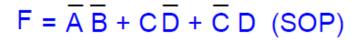
A	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

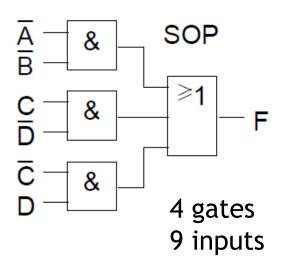
- Formulate a logic function that corresponds to the truth table on the right using both SOP and POS forms.
- Simplify your results.

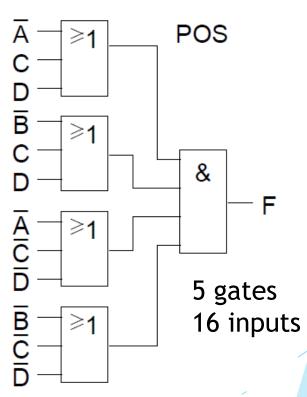
10 minterms, 6 maxterms. POS might be a smarter solution?

A	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

When simplified, the situation is reversed:







$$F = (\overline{A} + C + D)(\overline{B} + C + D)(\overline{A} + \overline{C} + \overline{D})(\overline{B} + \overline{C} + \overline{D}) \text{ (POS)}$$

Thank you!

