Peripheral (or tangential) velocity of the car	v	[m/s]
Time period that one round takes	T	[s]
Frequency of the periodic movement of the car	f	[1/s]
Angular velocity	ω	[rad/s]
Radius of the circle	r	[m]

Equations:

$$\omega = 2\pi f$$

$$f = \frac{1}{T}$$

$$\omega = \frac{v}{r}$$

Solution:

$$\omega = 2\pi f = \frac{2\pi}{T} = \frac{v}{r}$$

solve for r

$$r = \frac{vT}{2\pi} = \frac{(50\frac{1 \text{ m}}{3.6 \text{ s}})(24 \text{ s})}{2\pi} = 53.0516476972 \dots \text{m} \approx 53.1 \text{ m}$$

B)

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{(24 \text{ s})} = 0.26179938779 \frac{\text{rad}}{\text{s}} \approx 0.262 \frac{\text{rad}}{\text{s}}$$

Frequency of the jet engine 1	f_1	[1/s]
Frequency of the jet engine 2	f_2	[1/s]
Beat frequency	$f_{ m B}$	[1/s]
Average frequency	$f_{ m A}$	[1/s]

Equations:

$$f_{\rm B} = |f_2 - f_1|$$

 $f_{\rm A} = \frac{f_1 + f_2}{2}$

Solution:

Assume f_2 is higher than f_1 , then:

$$\begin{cases}
-f_1 + f_2 = f_{\rm B} \\
0.5f_1 + 0.5f_2 = f_{\rm A}
\end{cases}$$

$$f_1 = \frac{\begin{vmatrix} f_{\rm B} & 1 \\ f_{\rm A} & 0.5 \end{vmatrix}}{\begin{vmatrix} -1 & 1 \\ 0.5 & 0.5 \end{vmatrix}} = f_{\rm A} - 0.5 f_{\rm B} = 4100 \text{ Hz} - 0.5 (0.500 \text{ Hz}) = 4099.75 \text{ Hz} \approx 4099.8 \text{ Hz}$$

$$f_2 = \frac{\begin{vmatrix} -1 & f_{\rm B} \\ 0.5 & f_{\rm A} \end{vmatrix}}{\begin{vmatrix} -1 & 1 \\ 0.5 & 0.5 \end{vmatrix}} = f_{\rm A} + 0.5 f_{\rm B} = 4100 \text{ Hz} + 0.5(0.500 \text{ Hz}) = 4100.25 \text{ Hz} \approx 4100.3 \text{ Hz}$$

Mass connected to the spring	m	[kg]
Spring constant	k	[N/m]
Maximum velocity of the mass	$v_{ m max}$	[m/s]
Velocity of the mass	v	[m/s]
Amplitude of the mass vibrating	A	[m]
Spring (potential) energy	E_{s}	[J]
Kinetic energy of the mass	$E_{ m kin}$	[J]

Equations:

$$E_{\rm s} = \frac{1}{2}kx^2$$

$$E_{\rm kin} = \frac{1}{2}mv^2$$

$$x = A\sin\theta$$

$$v = \omega A\cos\theta$$

$$v_{\rm max} = \omega A$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$\frac{\sin\theta}{\cos\theta} = \tan\theta$$

A)
$$A = \frac{v_{\text{max}}}{\omega} = \sqrt{\frac{mv_{\text{max}}^2}{k}} = \sqrt{\frac{(11 \text{ kg})\left(10\frac{\text{m}}{\text{s}}\right)^2}{\left(43\frac{\text{N}}{\text{m}}\right)}}} = 5.057805388 \, \text{m} \approx 5.06 \, \text{m}$$

B) $E_{\text{S}} = E_{\text{kin}}$ substitute expressions $\frac{1}{2}kx^2 = \frac{1}{2}mv^2$ substitute expressions $k(A\sin\theta)^2 = m(\omega A\cos\theta)^2$ divide both sides by $k(A\cos\theta)^2$ $\left(\frac{\sin\theta}{\cos\theta}\right)^2 = \frac{m\omega^2}{k}$ substitute $\omega = \sqrt{\frac{k}{m}} \, \text{and} \, \frac{\sin\theta}{\cos\theta} = \tan\theta$ $(\tan\theta)^2 = 1$ take square root $\tan\theta = \pm 1$ $\theta = \pm 45^\circ \pm N \cdot 180^\circ$ $\sin\theta = \pm 1/\sqrt{2}$

$$x = A \sin \theta = \pm \sqrt{\frac{mv_{\text{max}}^2}{2k}} = \pm \sqrt{\frac{(11 \text{ kg})(10\frac{\text{m}}{\text{s}})^2}{2(43\frac{\text{N}}{\text{m}})}} = \pm 3.57640848 \dots \text{ m} \approx \pm 3.58 \text{ m}$$

Mass connected to the spring	m	[kg]
Spring constant	k	[N/m]
Distance that the spring is stretched from unstrained position	Δx	[m]
Potential energy of the mass after descending	$E_{ m pot}$	[J]
Spring (potential) energy	$E_{\mathtt{s}}$	[J]
Gravitational acceleration	g	$[m/s^2]$

Formulas:

$$E_{pot} = mg\Delta x$$

$$E_{s} = \frac{1}{2}kx^{2}$$

$$mg = k\Delta x$$

A)
$$\Delta x = \frac{mg}{k} = \frac{(0.500 \text{ kg})(9.81 \frac{\text{m}}{\text{s}^2})}{(40.0 \frac{\text{N}}{\text{m}})} = 0.122625 \text{ m} \approx 0.12 \text{ m}$$

B)
$$E_{\text{pot}} = mg\Delta x = \frac{(mg)^2}{k} = \frac{\left[(0.500 \text{ kg})\left(9.81\frac{\text{m}}{\text{s}^2}\right)\right]^2}{\left(40.0\frac{\text{N}}{\text{m}}\right)} = 0.601475625 \text{ J} \approx 0.60 \text{ J}$$

C)
$$E_{\rm s} = \frac{1}{2} k \Delta x^2 = \frac{1}{2} \frac{(mg)^2}{k} = 0.5 E_{\rm pot} = 0.3007378125 \, \text{J} \approx 0.30 \, \text{J}$$

 $E_{\rm s} = \frac{1}{2} E_{\rm pot}$

Mass connected to the spring	m	[kg]
Spring constant	k	[N/m]
Initial displacement	X	[m]
Final displacement	\boldsymbol{x}	[m]
Total distance that the mass slides as it slides back and forth	d	[m]
along the surface about the unstretched position		
Friction coefficient between the mass and the surface	μ	[-]
Energy dissipated into heat due to friction	$E_{ m f}$	[J]
Initial spring potential energy	$E_{ m SI}$	[J]
Final spring potential energy	$E_{ m SF}$	[J]

Formulas:

$$E_{SI} - E_{SF} = E_{f}$$

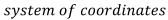
 $E_{f} = mg\mu d$
 $E_{SI} = \frac{1}{2}kX^{2}$
 $E_{SF} = \frac{1}{2}kx^{2}$
 $mg\mu = kx$

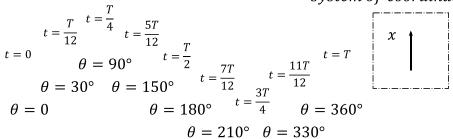
$$\begin{split} x &= \frac{mg\mu}{k} \\ E_{\rm SI} - E_{\rm SF} = E_{\rm f} \\ &= \frac{1}{2} (kX^2 - kx^2) = mg\mu d \\ &= \frac{1}{2} \left[kX^2 - k \left(\frac{mg\mu}{k} \right)^2 \right] = mg\mu d \\ &= \frac{mg^2}{2k} \mu^2 + mgd\mu - \frac{1}{2} kX^2 = 0 \\ &= \frac{mgd \pm \sqrt{(mgd)^2 + (mgX)^2}}{\frac{(mg)^2}{k}} \\ &= \frac{k(-d \pm \sqrt{d^2 + X^2})}{mg} = \frac{\left(43 \frac{\rm N}{\rm m} \right) \left[-(4 \, \rm m) \pm \sqrt{(4 \, \rm m)^2 + (2 \, m)^2} \right]}{(11 \, \rm kg) \left(9.81 \frac{\rm m}{\rm s^2} \right)} = 0.1881368368 \, \approx 0.188 \\ x &= \frac{mg\mu}{k} = -d \pm \sqrt{d^2 + X^2} = -(4 \, \rm m) \pm \sqrt{(4 \, \rm m)^2 + (2 \, m)^2} = 0.47213 \, \rm m \approx 0.47 \, m \end{split}$$

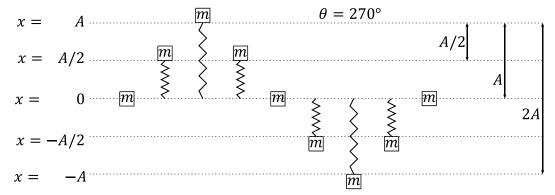
Assignment 6

Harmonic oscillator theory review sheet:

Point-like mass	m	[kg]
Spring constant	k	[N/m]
Displacement of the point-like mass from the unstrained position	$\boldsymbol{\chi}$	[m]
Amplitude of oscillation	\boldsymbol{A}	[m]
Period of oscillation	T	[s]
Force acting on the point-like mass	F	[N]
Acceleration of the point-like mass	а	$[m/s^2]$
Position of the point-like mass expressed as an angle	θ	[degrees]
Angular velocity of the point-like mass	ω	[degrees/s]
Velocity of the point-like mass	v	[m/s]
Time elapsed	t	[s]
Frequency of the oscillation	f	[1/s]







$$F = ma = -kx$$

$$x(t = 0) = 0$$
 $x(\theta = 90^{\circ}) = A$

see solution of the differential equation

$$x = A \sin \theta$$

$$v = \frac{dx}{dt} = \omega A \cos \theta$$

$$a = \frac{d^2x}{dt^2} = -\omega^2 A \sin \theta$$

$$\theta = \omega t \quad \omega = \sqrt{\frac{k}{m}} \quad \omega = 2\pi f \quad T = \frac{1}{f}$$

Solution of the differential equation

Constants in the general solution of the differential equation

 C_1, C_2 [m]

Differential equation to be solved:

$$ma(t) = -kx(t)$$

Initial conditions:

$$x(t=0)=0$$

$$x(\theta = 90^\circ) = A$$

Rearrange:

$$ma + kx = 0$$

$$a + \frac{k}{m}x = 0$$

Ordinary homogeneous differential equation with constant coefficients

Characteristic polynomial

$$r^2 + \frac{k}{m} = 0$$

$$r = \sqrt{-\frac{k}{m}} = \pm \sqrt{\frac{k}{m}}i$$

Form of the solution is

$$x = C_1 \cos\left(\sqrt{\frac{k}{m}}t\right) + C_2 \sin\left(\sqrt{\frac{k}{m}}t\right)$$

Initial condition x(t = 0) = 0:

$$x(t = 0) = C_1 \cos(0) + C_2 \sin(0) = C_1 = 0$$

Initial condition $x(\theta = 90^{\circ}) = A$:

$$x(\theta = 90^\circ) = C_2 \sin 90^\circ = C_2 = A$$

Final solution:

$$x = A \sin\left(\sqrt{\frac{k}{m}}t\right)$$

where
$$\sqrt{\frac{k}{m}} = \omega$$