

LES10A020 Engineering Physics

by Assoc. Prof. Jukka Paatero

Learning Objectives

- After successfully completing the course, students are able to:
 - Summarize the basics of thermal physics, electricity and wave motion
 - Solve elementary problems related to these topics

The course has no preliminary requirements

Passing and Grading

- Alternative 1:
 - Home assignments (50%)
 - Weekly
 - Course examinations (50%)
 - Mid-term examination
 - Final examination
- Extra points available (?):
 - Khan Academy course points (+10%), when feasible

- Alternative 2:
 - Passing Examination (100%)
 - Available once at the beginning of the course
 - If you master the course contents, you pass.

Core Contents of the Course

- Thermal physics: Physical basics of thermal physics, law of ideal gas, the first law of thermodynamics, phase changes, thermal expansion and heat transfer.
- Electricity and magnetism: Electrostatics (electric force, field and potential), capacitance, resistance, direct-current circuits, magnetism (magnetic force and field), electromagnetic induction, basics for alternating-current circuits.

Core Contents of the Course (cont.)

- Mechanical oscillations (harmonic, damped and forced oscillations), harmonic waves, mechanical and electromagnetic waves, interference, diffraction and polarization.
- SI-system.
- Detailed contents for preparation of the Passing Examination will be available on course Moodle pages

Course Support Resources

- Lectures (1×weekly):
 - Lecture slides,
 - Video recordings of the course lectures,
- Chan Academy learning materials
 - Self learning and support material

- Exercise sessions (1x weekly):
 - Live support for problem solving
 - Home assignments / Moodle online learning environment
 - Not during the first week

Contact Teaching Times, Period 1

• Lectures (7)

- Once a week, varying locations and times
- On weeks 37, 39, and 41 at Lahti campus on Thursdays 10-12
- Lappeenranta lectures on Wednesday 16-18

• Exercises (6)

- Register at Moodle to the exercise groups that suits your timetable
- Exercise times for a certain groups may vary weekly

Contact Teaching Times, Period 2

• Lectures (7)

- Once a week, varying locations and times
- On weeks 46, 48, and 50 at Lahti campus on Thursdays 10-12
- Lappeenranta lectures mostly on Thursdays 8-10

• Exercises (6)

- Same groups apply as during Period 1
- Exercise times for a certain groups may vary weekly

On Examinations

- Passing Examination will be available online during the weeks 36-37 (details to be announced later)
- Mid-term examination during examination week 43 / online exam
 - Also available on exam rooms during weeks 42-44, if possible.
- Final examination during examination week 51 / online exam
 - Also available on exam rooms during weeks 50-02, if possible.

Staff Contact Info

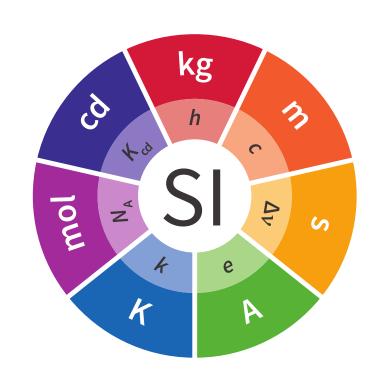
- Dr. Jukka Paatero
 - Reception: only upon agreement
 - Email: Jukka.Paatero@lut.fi
 - Tel: +358 50 569 79 65
- Dr. Juha Ratava
 - Back-up staff to be contacted only in case of communication emergency

International System of Units / SI-Units

Introduction

- To measure different physical properties, we need some agreed standard way of measuring them
- That way our measurements can become commeasurable
- There are currently several measurement systems used globally:
 - Metric system
 - British Units

Basic Units to be Defined


- To be able to consistently measure and report physical quantities, a consistent system of seven basic units is needed
- This system includes defining constants related to these units
- All other quantities and units can be derived from the basic seven.

- Basic units to be defined:
 - Time
 - Length
 - Mass
 - Electrical current
 - Thermodynamic temperature
 - Amount of substance
 - Luminous intensity

Metric System = International System of Units (SI)

- SI system originates from 1960
- The figure shows the SI units and related constants
- More information and figure source:

Revisiting Elementary Concepts in Thermodynamics

Thermodynamic System

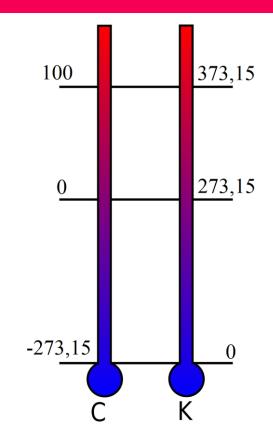
- On fundamental level, any physical system is formed by a group of particles.
 - In most everyday cases those particles would be atoms.
 - When concerned with basic thermodynamics and forgetting quantum mechanics, we will be ok with just observing the atoms or molecules formed by atoms.
- Thermodynamic system is such a system that can be characterized by temperature T, pressure p, volume V, and the number of particles n.

Thermodynamic Systems Around Us?

- The thermodynamic system can be any kind of collection of molecules and atoms.
- Basically, any whole object on the classroom can be considered a thermodynamic system.
- While we can observe the systems on macroscopic level just by using our senses, more accurate research requires microscopic analysis

Types of Thermodynamic Systems

- Isolated systems are not in interaction with their environment
- Closed systems can exchange energy with their environment, but not matter.
- Open systems can exchange anything with their environment
- Examples?
 - Thermos bottle, closed can of soda, glass of milk


Heat and Temperature

- On microscopic level heat energy refers to the jiggling motion that is present in all molecular structures and atoms.
 - The more heat energy, the hotter the system, the more jiggling
 - Some details at https://youtu.be/LL54E5CzQ-A
- On Macroscopic level heat manifests as heat energy transfer from hot to cold
- Temperature T is actually a statistical quantity that is defined based on the average kinetic energy of particles

Extreme Temperatures

- So, what kind of limits does temperature have?
- There is no upper limit to temperature. The energy of particles can increase without limit
- There is a lower limit, however
 - When there is no heat movement of the particles, the system has reached the absolute zero temperature, $T_0 = -273.15$ °C = 0K
- In closed system, temperature differences balance out when enough time has passed
 - This is called thermal equilibrium

About Energy

Forms of Energy

- Energy is very fundamental concept to physics and understanding all our environment
- Fundamentally, energy manifests as the ability for a system to do work.
 - Above, the system refers to a thermodynamic system, as discussed above
- Energy manifests in several forms:
 - Chemical energy, radiated energy, kinetic energy, potential energy

Internal Energy

- The internal energy \boldsymbol{U} of a thermodynamic system is the energy contained within it
 - Includes the energy contained in the movement of particles in the system and their chemical bounds
 - Does not include the kinetic energy of the system as a whole
 - Does not include the potential energy of the system
- Considers the energy changes due to changes in internal state of the system
- Internal energy is kind of "hidden"
 - Changes in internal energy are measurable, but its absolute value is difficult to identify

Conservation of Energy

- Energy can be transformer from one form to another, but the total quantity remains constant
- So, if work is done to an object to increase its energy, the system that did the work lost the same amount of energy.
- Unit of energy is [E] = 1 J (joule) = Nm

Potential & Kinetic Energy

- Potential energy is always formed in interaction with an energy field
 - Gravitation field is a common example, but it also applies in electric and magnetic fields and nuclear forces
 - Potential energy in gravitational field: $E_p = mgh$
- Kinetic energy results from movement against some point of reference
 - For a particle with mass m and velocity v, its kinetic energy is $E_k = \frac{1}{2} m v^2$
- Potential energy and kinetic energy are the two forms of mechanical energy

Interaction and Force

Interaction Between Systems

- Energy transfer between two systems requires some form of interaction between them
 - The alternative forms of interactions are called basic interactions
- When considering on macroscopic level and in terms of pushing against something, a force is required
 - That force creates an opposing counter force.
 - This is shown form example in the way Earth's gravity interacts with our bodies
- Force is an important physical concept we need in order to understand many physics phenomena

Pressure

- Pressure is a phenomenon describing a force effecting an area of a surface
- More accurately the amount of pressure p is the average perpendicular force F effecting a surface area A, so p = F/A, while $[p] = Pa = N/m^2$
- In addition to Pascal, also bar (referring close to normal atmospheric pressure) is often used as a pressure unit
 - Here 1 bar = 10^5 Pa
- More accurately, the normal pressure (pressure at sea level) is 101325 Pa = 1.01325 bar = 1 atm

Changing the Energy of a System

- Changes in the energy of a system can be seen either as work or heat.
- Work requires a force to be applied and transit takes place
- When heat quantity is brought into a system, it connects to the change of internal energy in the system.
- This change in energy is expressed as work [W] = J or heat quantity [Q] = J

Work

- Work is the energy transferred to or from an object via application of force
- Using a constant force F, the work W done to an object can be calculated by considering the achieved displacement s of the object
- If the force is to the same direction as displacement, then the achieved work is W = Fs, where [W] = J
- If the force is not constant, the total work can be calculated as a surface area in a force-displacement plane.
- Using vector notation, we can note $W = \overline{F} \cdot \overline{s}$

Heat Quantity

- Heat Quantity refers to the amount of heat transferred between two systems
- It can take place through any of the three forms of heat transfer
- For example, the heat quantity needed to heat up 1 kg of water for 1°C requires a total of Q = 4.19 kJ heat

Mechanisms of Heat Transfer

- Heat transfer includes a group of interactions that happens primarily on microscopical level
- Conduction refers to transfer of heat within a substance
 - In practice the faster jiggling of molecules push around the slowly moving, cooler ones
- Convection refers to transfer of material within a system and the transfer of heat with it
 - In practice the fast-jiggling molecules move to a new location with their heat energy

Heat Transfer as Radiation

- Radiation refers to transfer of heat as electromagnetic thermal radiation often abbreviated as "Infrared" or IR
 - In practice the collisions of fast-jiggling molecules excite electrons within their electron clouds which then release the energy into electromagnetic radiation that transfers the heat energy into a new location and new electron cloud
 - The wavelength λ_{IR} of infrared radiation is in the range of $0.7\mu m$ –1.0 mm
 - The amount of radiation a surface sends depends on its temperature and the type of the surface (the kind of thermal excitations available on the surface)

Laws of Thermodynamics

Rule of Thumbs

- The laws of thermodynamics can be summarized with two simple rules of thumb:
 - The amount of energy is always conserved
 - The entropy is always increasing

First Rule of Thermodynamics

 The change of total energy in a system is a sum of the work and heat quantity it has received

-
$$\Delta E_{kok} = W + Q$$

 In thermodynamics the change typically happens in the internal energy of the system, resulting in

-
$$\Delta U = W + Q$$

Power and Efficiency

- To fully understand the second law of thermodynamics, we need to understand about efficiency
- Power P describes the how much work W is done against time t:

-
$$P = W/t$$
; $[P] = W = J/s$

 Efficiency defines what portion of the energy a machine takes is converted into desired form

$$\eta = \frac{E_{output}}{E_{input}} = \frac{P_{output}}{P_{input}} \quad (0 < \eta < 1)$$

• Efficiency has no unit, and it is often reported as percentile $[0\% < \eta < 100\%]$

Second Law of Thermodynamics

- The second law defines the direction of natural processes
 - Natural process runs only in one sense, and is not reversible
 - Like heat flowing always from hotter to cooler system
- In another sense, thermodynamic system develops towards the more probable state and equilibrium
- This development of system is described with the term Entropy

Entropy

- Entropy can be considered as the degree of ordering within the system
 - The more order, the less entropy
 - Thus, natural processes have a tendency to increase disorder
- Entropy also connects to the thermodynamic equilibrium.
 - When long enough is waited, the system reaches its equilibrium state

Entropy and Efficiency

- Entropy manifests also through the efficiency of physical systems
- The system always has efficiency $\eta \leq 1$
- Even unity efficiency is not a fully realistic, so better $\eta < 1$

Thank you for your attention!

