Propositional logic

Olli-Pekka Hämäläinen

Logic

- Logic is a branch of science which emphasizes deduction and deduction processes
- Traditionally considered to belong in the field of philosophy, but plays a significant role also in mathematics
- Important in technical applications for example process logic of a machine:
 - What does the machine do and in which order?
 - What function is prioritized in case of multiple inputs?
- The more we outsource decisions to artificial intelligence (AI), the more important it is to define the working logic by means of discrete mathematics
- ▶ Ethical issues need to be addressed, too
 - For example, self-driving cars

WHY ASIMOV PUT THE THREE LAWS OF ROBOTICS IN THE ORDER HE DID:

POSSIBLE ORDERING

- 1. (1) DON'T HARM HUMANS
- 2. (2) OBEY ORDERS
- 3. (3) PROTECT YOURSELF

1

CONSEQUENCES

SEE ASIMOV'S STORIES]

BALANCED WORLD

- 1. (1) DON'T HARM HUMANS
- 2. (3) PROTECT YOURSELF
- 3. (2) OBEY ORDERS
- 1. (2) OBEY ORDERS
- 2. (I) DON'T HARM HUMANS
- 3. (3) PROTECT YOURSELF
- 1. (2) OBEY ORDERS
- 2. (3) PROTECT YOURSELF
- 3. (1) DON'T HARM HUMANS
- 1. (3) PROTECT YOURSELF
- 2. (1) DON'T HARM HUMANS
- 3. (2) OBEY ORDERS
- 1. (3) PROTECT YOURSELF
- 2. (2) OBEY ORDERS
- 3. (1) DON'T HARM HUMANS

EXPLORE HAHA, NO.

MARS! T'S COLD

AND I'D DIE.

FRUSTRATING WORLD

KILLBOT HELLSCAPE

KILLBOT HELLSCAPE

TERRIFYING STANDOFF

KILLBOT HELLSCAPE

Proposition

- Proposition is an expression that includes a claim
- Claim can be true (truth value = 1) or false (truth value = 0)
- The truth value of a proposition is fixed there's no variable inside the proposition; no ifs or buts
- Logic that uses only propositions is called propositional logic or 0th-order logic
 - We'll advance to first-order logic in the next lecture; it's probably easier to spot the difference, then
- Examples of atomic propositions:
 - p = "it's snowing outside"
 - q = "a leopard is a feline animal"
 - r = "Robert makes it to train in time"

Connectives

- In propositional logic we examine the properties of propositions formed from atomic propositions
- New propositions are formed from atomic propositions by using different connectives
- There are a lot of these connectives (very advanced ones too), but in principle, they all can be broken down to a couple of basic connectives
 - Negation $(\neg p)$
 - ightharpoonup Conjunction $(p \land q)$
 - ▶ Disjunction $(p \lor q)$
 - ▶ Implication $(p \Rightarrow q)$
 - $\blacktriangleright \quad \mathsf{Equivalence} \ (p \Leftrightarrow q)$
- Let's examine these connectives using truth tables

Negation $(\neg p)$

- "Not p" (compare in statistical mathematics: complement)
- Equivalents in so called natural language include
 - "No"
 - "It is not true, that..."
 - "We can't say that..."
- The definition is rather self-explanatory
- So is the truth table:

p	$\neg p$
0	1
1	0

Conjunction $(p \land q)$

- "p AND q" (compare in statistical mathematics: intersection)
- Equivalents in natural language:
 - "and"
 - "both ... and ..."
- Also rather self-explanatory concept
- Truth table shows that the statement is true only when p = 1 and q = 1

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

Disjunction $(p \lor q)$

- "p OR q" (compare in statistical mathematics: union)
- Equivalents in natural language:
 - "or" / "either... or ..."
- Interpretation problem in conversion from natural language to logic: how about if both are true?
 - In logic, disjunction is interpreted in such a way that both can be true at the same time
 - In natural language the or can be meant as exclusive (for example: "coffee or tea for dessert" = pick one but not both)
- Truth table is as follows:

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

Implication $(p \Rightarrow q)$

- "if p, then q"
- Equivalents in natural language include also
 - "when ..., ..."
 - In natural language people often use implication when they actually mean equivalence; be careful with conversion!)
- NOTE! False only when p is true and q is not
 - ► This might seem weird, but the definition is logical (pun intended): if the statement p is false, we can't prove the implication to be false
- Therefore the truth table looks like this:

p	q	$p \Rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Equivalence $(p \Leftrightarrow q)$

- "p if and only if q" (or "p iff q" for short)
- As the definition says, true only then when the truth values of p and q are the same
- In logic, the concept of equivalence is clear, but unambiguous interpretation of expressions in natural language is sometimes hard
 - Context is often needed
- Truth table:

p	q	$p \Leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Compound propositions

- Using connectives, we can formulate compound propositions from atomic propositions
- These compound propositions can be quite long strings
- It's usually favorable to use brackets in order to ensure accurate interpretation
- In addition, connectives are agreed to be applied in following order (compare to order of operations in "regular" mathematics):
 - 1. Negations
 - 2. Conjunctions & disjunctions
 - > 3. Implications and equivalences
- This order somewhat reduces the need for brackets
- The truth value of the compound proposition can be examined using a truth table
 - It's often wise to compose the truth table phase by phase

Examine the truth values of the proposition "if I go to a kiosk or store, I'll go to a store and buy beer"

- Examine the truth values of the proposition "if I go to a kiosk or store, I'll go to a store and buy beer"
- Divide to atomic propositions:
 - p = "I go to a kiosk"
 - r = "I go to a store"
 - q = "I buy beer"

- Examine the truth values of the proposition "if I go to a kiosk or store, I'll go to a store and buy beer"
- Divide to atomic propositions:
 - p = "I go to a kiosk"
 - r = "I go to a store"
 - q = "I buy beer"
- Construct a truth table. Because there are three atomic propositions and each can be either 1 (true) or 0 (false), the number of rows in a truth table will be $2^3 = 8$

- Examine the truth values of the proposition "if I go to a kiosk or store, I'll go to a store and buy beer"
- Divide to atomic propositions:
 - p = "I go to a kiosk"
 - r = "I go to a store"
 - q = "I buy beer"
- Construct a truth table. Because there are three atomic propositions and each can be either 1 (true) or 0 (false), the number of rows in a truth table will be $2^3 = 8$
- It's a good idea to define truth values for the following propositions as mid-results
 - $p \lor r$ ("I go to a kiosk or store")
 - $ightharpoonup q \wedge r$ ("I go to a store and buy beer")

Truth table will then look like this:

p	q	r	$p \vee r$	$q \wedge r$	$p \vee r \Rightarrow q \wedge r$
0	0	0	0	0	1
0	0	1	1	0	0
0	1	0	0	0	1
0	1	1	1	1	1
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	1	1

Tautologies

- If the newly formed proposition is always true, this proposition is called a tautology
- This means that the truth value of the proposition is always 1 - no matter what the truth values of its atomic propositions are
- A proposition can be proven to be a tautology by constructing a truth table
 - ▶ If the end column consists of only 1s, it's a tautology
 - The previous example wasn't, obviously
- Let's now examine a couple of propositions that have been proven to be tautologies
 - Tautologies form logical rules

Examine the proposition $(p \Rightarrow q) \land p \Rightarrow q$

- **Examine the proposition** $(p \Rightarrow q) \land p \Rightarrow q$
- Let's proceed in peace, one connective at a time:
 - Start with atomic propositions p and q
 - Find out truth value of $p \Rightarrow q$
 - Next, truth value of $(p \Rightarrow q) \land p$
 - After this, final truth value for the whole proposition

- **Examine the proposition** $(p \Rightarrow q) \land p \Rightarrow q$
- Let's proceed in peace, one connective at a time:
 - Start with atomic propositions p and q
 - Find out truth value of $p \Rightarrow q$
 - ▶ Next, truth value of $(p \Rightarrow q) \land p$
 - After this, final truth value for the whole proposition

p	q	$p \Rightarrow q$	$(p \Rightarrow q) \land p$	$(p \Rightarrow q) \land p \Rightarrow q$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

- **Examine the proposition** $(p \Rightarrow q) \land p \Rightarrow q$
- Let's proceed in peace, one connective at a time:
 - Start with atomic propositions p and q
 - Find out truth value of $p \Rightarrow q$
 - Next, truth value of $(p \Rightarrow q) \land p$
 - After this, final truth value for the whole proposition

p	q	$p \Rightarrow q$	$(p \Rightarrow q) \land p$	$(p \Rightarrow q) \land p \Rightarrow q$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

We notice that the proposition is a tautology.

Commonly known tautologies

Tautology	Name
$p \Leftrightarrow p$	Law of identity
$\neg(p \land \neg p)$	Law of non-contradiction
$p \vee \neg p$	Law of excluded middle
$\neg \neg p \Leftrightarrow p$	Law of double negation
$\neg(p \land q) \Leftrightarrow (\neg p \lor \neg q)$	De Morgan's Theorem 1
$\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$	De Morgan's Theorem 2
$p \Rightarrow q \Leftrightarrow \neg p \lor q$	Definition of implication 1
$p \Rightarrow q \Leftrightarrow \neg (p \land \neg q)$	Definition of implication 2

Commonly known tautologies

Tautology	Name
$p \wedge p \Leftrightarrow p$	Idempotent law 1
$p \lor p \Leftrightarrow p$	Idempotent law 2
$p \wedge q \Leftrightarrow q \wedge p$	Commutation law 1
$p \lor q \Leftrightarrow q \lor p$	Commutation law 2
$(p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p)$	Commutation law 3
$p \land (q \land r) \Leftrightarrow (p \land q) \land r$	Association law 1
$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$	Association law 2
$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	Distribution law 1
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$	Distribution law 2

How to use tautologies?

- According to rules of logic, we can always replace any part of a proposition by a logically equivalent part
 - "Logically equivalent" = has identical truth table
- Hence, we can use tautologies in order to simplify propositions
- Notice that logically equivalent propositions may have different nuances in natural language
 - "We have to balance the budget, but raising taxes is not an option" sounds better than "We have to balance the budget, so we cut the public services and social benefits"
 - "I can't say that we played well" = "we played poorly"

$$\neg(p \lor q \Rightarrow \neg p \land \neg q)$$

$$\neg (p \lor q \Rightarrow \neg p \land \neg q)$$
 Definition of implication 2
$$\equiv \neg \neg \big((p \lor q) \land \neg (\neg p \land \neg q) \big)$$

$$\neg(p\vee q\Rightarrow \neg p\wedge \neg q)$$
 Definition of implication 2
$$\equiv \neg \neg \big((p\vee q)\wedge \neg (\neg p\wedge \neg q)\big)$$
 Double negation & De Morgan 2
$$\equiv (p\vee q)\wedge (\neg \neg p\vee \neg \neg q)$$

$$\neg (p \lor q \Rightarrow \neg p \land \neg q) \qquad \text{Definition of implication 2}$$

$$\equiv \neg \neg \big((p \lor q) \land \neg (\neg p \land \neg q) \big) \qquad \text{Double negation \& De Morgan 2}$$

$$\equiv (p \lor q) \land (\neg \neg p \lor \neg \neg q) \qquad \text{Double negation}$$

$$\equiv (p \lor q) \land (p \lor q)$$

$$\neg (p \lor q \Rightarrow \neg p \land \neg q) \qquad \text{Definition of implication 2}$$

$$\equiv \neg \neg \big((p \lor q) \land \neg (\neg p \land \neg q) \big) \qquad \text{Double negation \& De Morgan 2}$$

$$\equiv (p \lor q) \land (\neg \neg p \lor \neg \neg q) \qquad \text{Double negation}$$

$$\equiv (p \lor q) \land (p \lor q) \qquad \text{Idempotent law}$$

$$\equiv p \lor q$$

$$abla (p \lor q \Rightarrow \neg p \land \neg q)$$
 Definition of implication 2
$$\equiv \neg \neg \big((p \lor q) \land \neg (\neg p \land \neg q) \big)$$
 Double negation & De Morgan 2
$$\equiv (p \lor q) \land (\neg \neg p \lor \neg \neg q)$$
 Double negation
$$\equiv (p \lor q) \land (p \lor q)$$
 Idempotent law
$$\equiv p \lor q$$

The examined proposition is therefore equivalent to the disjunction of p and q. We could even say that...

$$\neg(p \lor q \Rightarrow \neg p \land \neg q) \Leftrightarrow p \lor q$$

...is a tautology.

Thank you!

