This repository has been archived on 2025-12-11. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files

52 lines
1.9 KiB
Plaintext

📚 Loading data from Parquet file at '../data/sampled_fakenews_train.parquet'
📚 Loading data from Parquet file at '../data/sampled_fakenews_valid.parquet'
📚 Loading data from Parquet file at '../data/sampled_fakenews_test.parquet'
🧮 Grouping into binary classes...
🪙 Preprocessing text...
🔍 Training models...
📊 Logistic Regression FakeNewsCorpus Performance:
precision recall f1-score support
Reliable 0.84 0.90 0.87 54706
Fake 0.80 0.70 0.75 30584
accuracy 0.83 85290
macro avg 0.82 0.80 0.81 85290
weighted avg 0.83 0.83 0.83 85290
📊 Naïve Bayes FakeNewsCorpus Performance:
precision recall f1-score support
Reliable 0.79 0.92 0.85 54706
Fake 0.79 0.57 0.67 30584
accuracy 0.79 85290
macro avg 0.79 0.74 0.76 85290
weighted avg 0.79 0.79 0.78 85290
📚 Loading LIAR dataset...
🧮 Grouping into binary classes...
🪙 Preprocessing text...
📊 Logistic Regression LIAR Performance:
precision recall f1-score support
Reliable 0.75 0.79 0.77 926
Fake 0.32 0.26 0.29 338
accuracy 0.65 1264
macro avg 0.53 0.53 0.53 1264
weighted avg 0.63 0.65 0.64 1264
📊 Naïve Bayes LIAR Performance:
precision recall f1-score support
Reliable 0.74 0.98 0.84 926
Fake 0.55 0.06 0.11 338
accuracy 0.74 1264
macro avg 0.65 0.52 0.48 1264
weighted avg 0.69 0.74 0.65 1264